Wavelet Sparse Approximate Inverse Preconditioners

نویسندگان

  • Tony Chan
  • W. L. Wan
چکیده

There is an increasing interest in using sparse approximate inverses as preconditioners for Krylov subspace iterative methods. Recent studies of Grote and Huckle [21] and Chow and Saad [11] also show that sparse approximate inverse preconditioner can be effective for a variety of matrices, e.g. Harwell-Boeing collections. Nonetheless a drawback is that it requires rapid decay of the inverse entries so that sparse approximate inverse is possible. However, for the class of matrices that come from elliptic PDE problems, this assumption may not necessarily hold. Our main idea is to look for a basis, other than the standard one, such that a sparse representation of the inverse is feasible. A crucial observation is that the kind of matrices we are interested in typically have a piecewise smooth inverse. We exploit this fact by applying wavelet techniques to construct a better sparse approximate inverse in the wavelet basis. We shah justify theoretically and numerically that our approach is effective for matrices with smooth inverse. We emphasize that in this paper we have only presented the idea of wavelet approximate inverses and demonstrated its potential but have not yet developed a highly refined and efficient algorithm. Key words, preconditioning, approximate inverses, sparse matrices, wavelets AMS(MOS) subject classifications. 65F10, 65F35, 65F50, 65Y05, 65Y20

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Toward an Effective Sparse Approximate Inverse Preconditioner

Sparse approximate inverse preconditioners have attracted much attention recently, because of their potential usefulness in a parallel environment. In this paper, we explore several performance issues related to effective sparse approximate inverse preconditioners (SAIPs) for the matrices derived from PDEs. Our refinements can significantly improve the quality of existing SAIPs and/or reduce th...

متن کامل

Approximate Inverse Preconditioners for General Sparse Matrices

The standard Incomplete LU (ILU) preconditioners often fail for general sparse indeenite matrices because they give rise tòunstable' factors L and U. In such cases, it may be attractive to approximate the inverse of the matrix directly. This paper focuses on approximate inverse preconditioners based on minimizing kI?AMk F , where AM is the preconditioned matrix. An iterative descent-type method...

متن کامل

Block Approximate Inverse Preconditioners for Sparse Nonsymmetric Linear Systems

Abstract. In this paper block approximate inverse preconditioners to solve sparse nonsymmetric linear systems with iterative Krylov subspace methods are studied. The computation of the preconditioners involves consecutive updates of variable rank of an initial and nonsingular matrix A0 and the application of the Sherman-MorrisonWoodbury formula to compute an approximate inverse decomposition of...

متن کامل

Approximate Inverse Preconditioners via Sparse-Sparse Iterations

The standard incomplete LU (ILU) preconditioners often fail for general sparse in-deenite matrices because they give rise tòunstable' factors L and U. In such cases, it may be attractive to approximate the inverse of the matrix directly. This paper focuses on approximate inverse preconditioners based on minimizing kI ? AMk F , where AM is the preconditioned matrix. An iterative descent-type met...

متن کامل

Approximate Inverse Preconditioners for Some Large Dense Random Electrostatic Interaction Matrices

A sparse mesh-neighbour based approximate inverse preconditioner is proposed for a type of dense matrices whose entries come from the evaluation of a slowly decaying free space Green’s function at randomly placed points in a unit cell. By approximating distant potential fields originating at closely spaced sources in a certain way, the preconditioner is given properties similar to, or better th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997